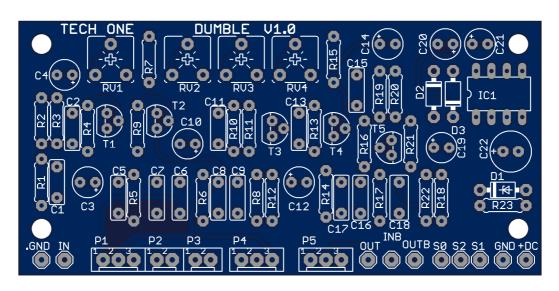
Dumble Emu - by Tech One

'FET Dumble' Style Pedal - Overdrive/Preamp

PCB - Bauanleitung

Das Dumble EMU emuliert den Ton des berühmten Dumble Verstärker unter Verwendung des gleichen Schaltplans, des mystischen, handgefertigten Verstärker aus den 70er Jahren, und Einsatz von JFET-Transistoren anstelle von Röhren.


Die Grundschaltung stammt von ROG. Zusätzlich wurden optionale Mods hinzugefügt, wie z.B. die Verdopplung der Betriebsspannung für mehr Headroom und ein Ausgansbuffer zur Verminderung der Ausgangsimpedanz.

Regler: Bass, Middle, Treble, Volume, Master.

Spannungsversorgung: DC 9V, intern wahlweise 9V bzw. 18V

Einige zusätzliche Mods.

Dumble Emu V1.0 PCB:

Eigenschaften:

- Die Platine ist doppelseitig kaschiert und ist sehr kompakt (misst lediglich ca. 86mm x 42mm). Damit passt sie in ein 1590BB.
- Interner DC-Converter für optionale 18V Betriebsspannung
- Optionaler Ausgangsbuffer und Millenium-LED
- Auf der Platine werden keine mechanischen Bauteile (wie Buchsen, Potis, Schalter) direkt eingelötet. Sie werden frei mit der Platine mit Litzen verbunden. Solcher Aufbau verbessert zum einen dauerhaft die mech. Stabilität des fertigen Gerätes (keine Lötbruchstellen) und zum anderen lässt sich das Design des Pedals (Position der Potis, Buchsen; Schalter usw.) flexibler gestalten.
- Gut lesbarer Bestückungsdruck auf der Oberseite ermöglicht problemloses Platzieren der Bauteile.
- Die Platzierung der Bauteile ermöglicht das "kippen" von radialen Elkos, um notfalls Platz in der Höhe zu sparen.
- In der Schaltung wurden gängige und leicht erhältliche elektronische Komponente verwendet.
- Vier 3,2mm Löcher ermöglichen problemloses Befestigen der Platine im Gehäuse.
- Beim sauberen Löten und fehlerfreien Aufbau sofort funktionstüchtig.

Mögliche Modifikationen und Verbesserungsvorschläge werden ab Seite 7 beschrieben.

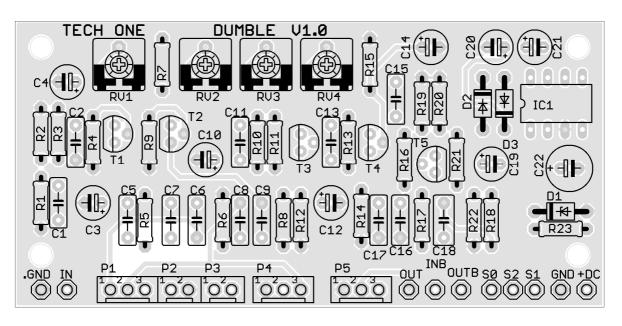
Materialliste

WIDER	WIDERSTÄNDE		
Menge	Wert	Bauteilname	Notiz
1	2M2	R1	Alle Wid. liegend, auf RM 10mm gebogen
3	1M	R2, R18, R19	
1	33k	R3	
4	1k5	R4, R9, R12, R15	
4	100k	R5, R11, R14, R22	
3	10k	R6, R7, R20	
1	220k	R8	
1	68k	R10	
1	180k	R13	
2	15k	R16, R17	
1	100R	R21	
1	22R	R23	

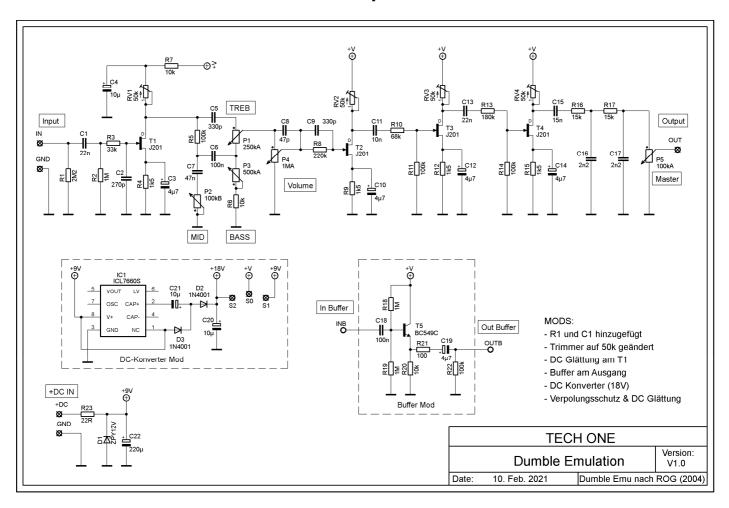
KONDE	KONDENSATOREN		
Menge	Wert	Bauteilname	Notiz
2	22n	C1, C13	Folienkond.
1	270p	C2	Folien- oder Keramikkond.
2	330p	C5, C9	ш
2	100n	C6, C18	Folienkond.
1	47n	C7	п
1	47p	C8	Keramikkond.
1	10n	C11	Folienkond.
1	15n	C15	"
2	2n2	C16, C17	"
3	10µ	C4, C20, C21	Elko /25V
5	4µ7	C3, C10, C12, C14, C19	Elko /25V, Audio Elko z.B. Panasonic FC,
			Nichicon FW
1	220µ	C22	Elko /25V

HALBLEITER			
Menge	Wert	Bauteilname	Notiz
4	J201	T1, T2, T3, T4	N-JFET, alt. 2N5457, MPF102
1	BC549C	T5	NPN rauscharm, alt.BC550C
1	ICL7660S	IC1	Spannungswandler
1	ZPY12V	D1	Z-Diode 12V
2	1N4001	D2, D3	Si-Diode, alt. 1N4148

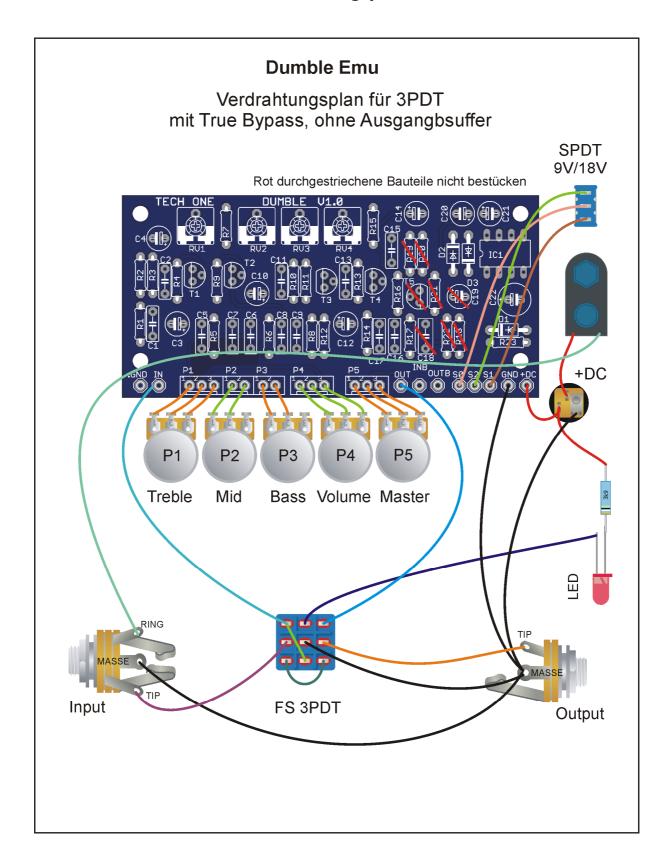
POTEN'	POTENTIOMETER & SCHALTER		
Menge	Wert	Bauteilname	Notiz
1	250kA	P1	250k log.
1	100kB	P2	100k lin.
1	500kA	P3	500k lin
1	1MA	P4	1M log.
1	100kA	P5	100k log.
4	50k	RV1, RV2, RV3, RV4	Trimmer (5x5mm)
1	SPST		SPST Kipp- oder Schiebe-Schalter (9V/18V
	Schalter		Umschaltung)

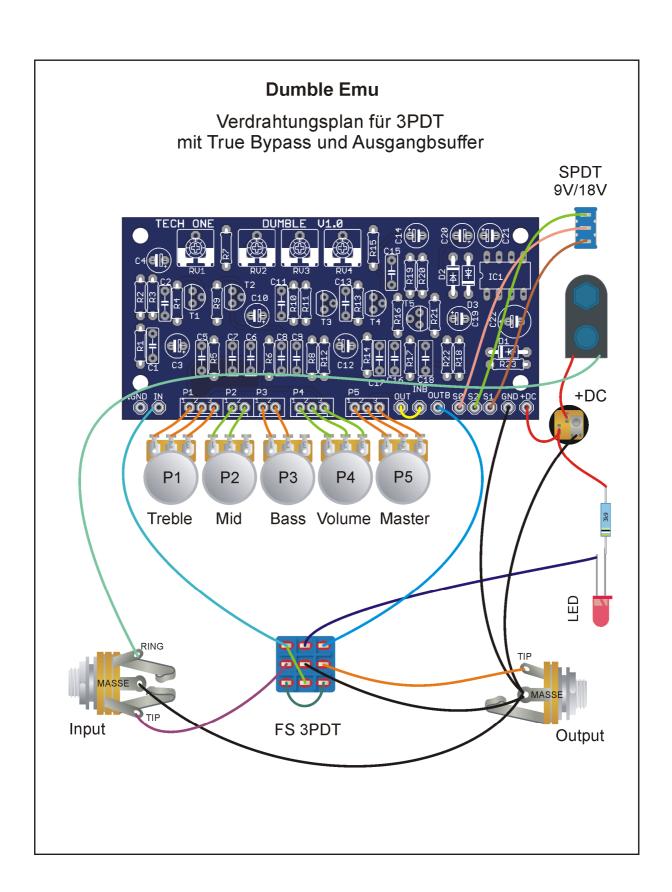

ZUSATZ-MATERIAL		
1x 3PDT Fussschalter		
1x Klinkenbuchse mono		
1x Klinkenbuchse stereo (Batt-Betr.)		
1x LED, 3mm oder 5mm, Farbe nach Wahl		
1x LED Fassung, 3mm oder 5mm (optional)		
1x Widerstand 2k2 – 4k7 für die LED		
1x DC-Buchse		
1x IC Sockel DIP-8 (optional)		
1x Batterie-Clip		
1x Gehäuse z.B. 1590BB o. 125B		
und Litze, Knöppe, Gummifüsse & Lack ;-)		

Alle Widerstände: 0207, Metallschicht, Toleranz 1%, Belastbarkeit 0,125-0,6W


Alle Folienkondensatoren: Radial, Raster 5mm

Alle Elkos: Radial, Spannungsfestigkeit mind. 16V, besser 25V.


Bestückungsplan



Schaltplan.

Verdrahtungspläne

MODS & TIPPS:

- Das PCB hat folgende, eingebaute Mods.

- Koppelkondensator und Pulldown-Widerstand im Eingang hinzugefügt
- Drain-Trimmer auf 50k geändert
- Spannungsglättung am T1, zum Entbrummen der Eingansstufe
- Buffer am Ausgang, zwecks Ausgangsimpedanz-Verringerung (optional)
- DC-Konverter für 18V Betriebsspannung, zwecks höheren Headroom (optional)
- DC-Verpolschutz und Spannungsglättung

- Transistoren

Für die JFet's T1-T4 (J201) kann man alternativ andere Typen einsetzten. Möglich wären z.B. 2N5457, BF245, oder PF5102. Auf abweichende Pinbelegung achten! Für T5 (Falls Buffer im Betrieb) lässt sich ein, ebenfalls rauscharmer BC549C einsetzen. Auch ein 2N5088, oder 2SC1815 sollten an dieser Stelle gute Dienste leisten (Pinbelegung beachten).

- Trimmereinstellung

Mit den Trimmer RV1-RV4 werden die Arbeitspunkte (Bias) der Transistoren T1-T4 eingestellt. Dabei wird die Spannung am Drain des jeweiligen FET gemessen. Die Spannungsangaben sind cirka Werte und können abhängig von den Parameter der verwendeten FET's abweichen.

Angaben bei 9V Betriebsspannung:

Transistor/ Trimmer	Spannungswert für beste Signalsymetrie	Spannungswerte für (subjektiv) angenemste Zerre
T1, RV1	2,3V	3,0V
T2, RV2	2,0V	2,3V
T3, RV3	4,7V	3,0V
T4, RV4	5,2V	3,5V

Eine Einstellung nach Gehör ist ebenfalls möglich.

Man stellt zuerst alle Trimmer in die Mittelstellung und arbeitet sich von VR1 bis VR4 nach vorn. Man stellt die Trimmer so ein, dass es bei Gitarreanspielen den angenehmsten Sound ergibt. Erlaubt ist alles was gefällt :-)

Zur Not lassen sich Trimmer VR1 auf ca. 3,5V und Trimmer VR2, VR3 und VR4 auf ca. 4,5V einstellen. Dabein kommt schon mal ein brauchbarer Sound raus.

- Spannungswandler (DC-Convertor)

Die Schaltung wurde um einen internen DC-Konverter (ICL7660S) erweitert, der zusätzlich eine höhere Betriebsspnnaung erzeugt (+18V).

Damit wird das Gerät bequem mit einem konv. +9V Netzteil gespeist, bietet aber die Möglichkeit mit Hilfe eines Kippschalters zw. 9V und 18V auswählen zu können.

Mit einer höheren Spannung bekommt man mehr Headroom, der maximalle Zerrgrad sinkt allerdings etwas.

Falls man auf den Spannungswandler verzichten möchte und doch lieber mit "nur" 9V fahren möchte, kann IC1, C20, C21, D2 und D3 unbestückt lassen und die Lötpunkte S0 & S1 auf der Platine mit einer Drahtbrücke verbinden

- Buffer am Ausgang

Dank des Ausgangsbuffers (rund um T5) wird die Ausgangsimpedanz verringert, wodurch lange Kabelwege am Ausgang der Schaltung keine negativen Auswirkungen auf den Sound ausüben können. Der Buffer ist optional und lässt sich beim Bedarf natürlich weglassen, um eine originale Verhaltensweise der Ausgangsstufe beizubehalten. Dazu lässt man T5, R18, R19, R20, R21, R22, C18 und C19 unbestückt und verbindet den regulären OUT mit dem Fussschalter. Siehe dazu Schaltplan und Verdrahtungsplan.

- Zusätzliche Mods

Der Eingang wurde, im Gegensatz zum "ROG Original" um einen Koppelkondensator (C1). und einen Pulldown-Widerstand (R1) erweitert.

Der Koppelkond ist zwar empfehlenswert, aber wer sich strickt nach dem Vorbild richten möchte, kann C1 weg lassen und stattdessen eine Drahtbrücke einlöten. Dabei sollte auch der Pulldownwiderstand R1 entfallen.
